Mostrando postagens com marcador Telescopio. Mostrar todas as postagens
Mostrando postagens com marcador Telescopio. Mostrar todas as postagens

quinta-feira, 14 de agosto de 2014

A Ordem é contato imediato ! -Ets


A ORDEM É CONTATO IMEDIATO !


Em março os astrônomos americanos Geoffrey Marcy e Paul Butter descobriram mais um planeta fora do sistema solar. É o terceiro que eles localizam em apenas três meses. Para isso usaram telescópios relativamente fracos perto dos novos aparelhos que a Nasa quer pôr em órbita entre 2003 e 2010 para procurar outros mundos e verificar se lá existe vida. De preferência inteligente! Durante décadas, com medo de perder credibilidade, a Nasa escondeu do público seus projetos de procurar organismos no espaço. Eles agora são seu porta-estandarte. O ramo científico da moda se chama exobiologia, que é o estudo da biologia fora da Terra. E a palavra de ordem é encontrar os ETs.

quarta-feira, 26 de março de 2014

Á procura de novos mundos - Astronomia

À PROCURA DE NOVOS MUNDOS - Astronomia


Astrônomos e astrofísicos estão vasculhando a Via Láctea para tentar ver, pela primeira vez, um planeta fora do sistema solar. Já encontraram mais de cem estrelas que parecem ter o seu próprio sistema planetário - da mesma maneira que o Sol é cercado pela Terra, Marte, Júpiter e outros corpos celestes. Até hoje não se viu um planeta como o nosso. Mas ele pode muito bem estar aí no céu, girando em torno de alguma estrela não muito longe da gente.

quinta-feira, 16 de janeiro de 2014

O salvamento do Hubble - Astronomia

O SALVAMENTO DO HUBBLE - Astronomia


As ferramentas que os astronautas pretendem manusear no vácuo para dar novos olhos e melhor equilíbrio ao telescópio espacial.

terça-feira, 8 de outubro de 2013

Alerta contra o cometa Errante - Astronômia


ALERTA CONTRA O COMETA ERRANTE - Astronomia


Fragmentado pela força da luz e do vento solar, o cometa Swift-Tuttle se afasta da suposta rota de colisão com a Terra, daqui a 134 anos. Mas fará um vôo rasante que as gerações futuras poderão apreciar sem medo.

sexta-feira, 16 de agosto de 2013

Nasa desiste de restabelecer pleno funcionamento do telescópio Kepler


Nasa desiste de restabelecer pleno funcionamento do telescópio Kepler

Ilustração mostra o telescópio espacial Kepler (Foto: Nasa)

Equipamento teve problemas em duas rodas que proporcionavam precisão.
Cientistas buscam nova função para satélite que descobriu 135 planetas.

A agência espacial americana, Nasa, anunciou nesta quinta-feira (15) que desistiu das tentativas de restabelecer o pleno funcionamento do telescópio espacial Kepler, que teve problemas em duas de quatro rodas que dão estabilidade e precisão ao equipamento. Como nos giroscópios, essas rodas têm alta rotação, o que pode gerar desgaste.

sábado, 18 de maio de 2013

Kepler em repouso; será o fim?

Kepler em repouso; será o fim?


A missão do Telescópio Espacial Kepler (essa mesma aí do post anterior) pode estar com os dias contados.

O funcionamento normal do satélite é mais ou menos assim: quase que semanalmente, ele volta suas antenas de comunicação em direção a Terra para fazer o download dos dados observados. O telescópio fica durante alguns dias apontado para uma região do céu, mais precisamente nas constelações do Cisne, da Lira e do Dragão. Depois de acumular dados dessa região, se move de maneira a apontar a antena para a Terra e descarrega as informações. Depois disso, volta a apontar na mesma direção de antes.

quarta-feira, 12 de setembro de 2012

Kepler: Os Caminhos dos Planetas



KEPLER: OS CAMINHOS DOS PLANETAS



Em pleno século XVII, ele estabeleceu as três leis gerais que descrevem as órbitas planetárias e promoveu uma revolução na Astronomia.

Johannes Kepler foi concebido às 4h37 da madrugada do dia 16 de maio de 1571 na aldeia de Weill região da Suábia, Sudoeste da Alemanha - e nasceu às 15h30 de 27 de dezembro, exatamente 224 dias, 9 horas e 33 minutos mais tarde. Esses são, pelo menos, os cálculos inscritos numa espécie de horóscopo que Kepler fez para si mesmo e sua família. Segundo o documento, seus parentes formavam uma formidável constelação de indivíduos degenerados, neuróticos ou francamente malucos. O que não impediria Kepler de revolucionar a Astronomia, estabelecendo as três leis gerais das órbitas planetárias, base sobre a qual o físico inglês Isaac Newton construiria, em 1665, a grande síntese da gravitação universal.
Kepler era uma criança enfermiça, de membros delicados, e sofria de miopia e poliocopia anocular (visão múltipla). Mas, graças à inteligência brilhante, foi aceito aos 13 anos no seminário teológico de Adelberg. Ganhara uma bolsa de estudo concedida pelo duque de Wurttemberg. Neurótico, como era de esperar, Kepler abominou o seminário em geral e seus colegas em particular. Atormentado por problemas de relacionamento, refugiou-se nos estudos. Tornou-se muito bem-visto pelos professores, alguns dos quais permaneceram seus amigos ao longo de toda a sua existência.
Há várias indicações de que no final da adolescência seu temperamento tornou-se mais fácil. Diplomou-se pela Faculdade de Artes da Universidade de Tubingen aos 20 anos e ingressou então na Faculdade Teológica, onde estudou mais quatro anos. Antes que pudesse prestar os exames finais, recebeu um proposta para ocupar o posto de professor de Matemática e Astronomia de Graz, capital da Estíria, província austríaca. Além das aulas, Kepler devia preparar todos os anos um calendário de previsões astrológicas, tarefa que ele classificava de "diversão simiesca e sacrílega", mas lhe rendia vinte florins extras. "O espírito habituado à dedução matemática, quando se vê frente a frente com os falsos alicerces da Astrologia", lamentava-se ele, "resiste longamente como um burro teimoso até que, compelido pelas pancadas e pragas, mergulha o pé no imundo lamaçal".
O acontecimento capital de sua estada em Graz, no entanto, foi uma espécie de lampejo que lhe atravessou o espírito em 9 de julho de 1595, no instante em que desenhava figuras geométricas no quadro-negro. Note-se que essa famosa descoberta era inteiramente equivocada e hoje parece estapafúrdia. Kepler estava ensinando a seus alunos o sistema heliocêntrico - os planetas girando em torno do Sol, grande novidade exposta havia apenas doze anos pelo astrônomo polonês Nicolau Copérnico (SUPERINTERESSANTE número 1, ano 3). Subitamente, pareceu-lhe muito significativo o fato de existirem apenas seis planetas (Urano, Netuno e Plutão ainda não haviam sido descobertos) e cinco sólidos perfeitos: tetraedro, cubo, octaedro, dodecaedro e icosaedro.
Ocorreu-lhe inscrever e circunscrever esses cinco sólidos em seis esferas. E verificou que a distância entre as diferentes esferas era proporcional à distância real existente entre as órbitas dos diferentes planetas. Ou melhor, mais ou menos proporcional. Porque, se os números concordavam aproximadamente no caso de Marte, da Terra e de Vênus, tornavam-se totalmente discrepantes para Júpiter e Mercúrio. Kepler "quebrou o galho" alegando que a discrepância em relação a Júpiter não espantaria ninguém, já que o planeta ficava "longe demais". Quanto a Mercúrio, recorreu provisoriamente à fraude, alterando o número segundo suas conveniências.
Mas era honesto demais para se contentar com esses subterfúgios e, na tentativa de provar sua teoria maluca, mergulhou em pesquisas persistentes e detalhadas sobre o sistema solar. Em 1596, aos 24 anos, Kepler publicou um resumo de suas primeira tentativas na obra intitulada Mysterium cosmographicum. No ano seguinte, casou-se. O horóscopo do dia do casamento, 27 de abril de 1597, que apresentava um "céu calamitoso" cumpriu-se integralmente. 
Após atormentar a paciência do marido durante catorze anos, Barbara Kepler morreu louca. A vida do casal foi agitada. Mal tinham se casado, quando o jovem arquiduque Fernando de Hamburgo (mais tarde imperador Fernando II) achou que era hora de varrer as províncias austríacas da heresia luterana. No verão de 1598, a escola de Kepler fechou as portas e em setembro todos os professores luteranos receberam ordem de abandonar as províncias. Kepler, que tinha amigos entre os jesuítas, conseguiu evitar o exílio forçado, mas perdeu o emprego. A prudência recomendava que fosse procurar novos ares.
Há algum tempo ele desejava visitar o famoso astrônomo dinamarquês Ticho Brahe no observatório de Uraniborg, na ilha de Hven entre Copenhague, na Dinamarca, e Helsingborg, na Suécia. Ticho, obcecado pela idéia de precisão nas observações que fazia, dedicara-se a construir instrumentos científicos cada vez mais perfeitos e a comparar uns com os outros, para conhecer o erro inerente a cada um. Com eles produziu, ao longo de 35 anos, grossos volumes de anotações, espantosamente precisas para os padrões da época, que pretendia utilizar para reentronizar a Terra como o centro do Universo - posição da qual começava a ser afastada desde a publicação dos trabalhos de Nicolau Copérnico.
O notável observador tinha, no entanto, escassos dotes para a Matemática - daí alegrar-se com a perspectiva de ter Kepler a seu lado, a fim de fornecer-lhe os cálculos necessários para dar sustentação à sua idéia. Kepler, ao contrário, esperava ter acesso aos volumes de Ticho para desenvolver suas próprias teorias a respeito sobretudo da movimentação dos planetas. A hora era boa à execução do projeto, tanto mais que, por coincidência, Ticho se desentendera com o rei Cristiano IV e acabara de se mudar da longínqua Uraniborg para a cidade de Praga, capital da atual Tchecoslováquia, onde recebera o posto de Matemático Imperial das mãos do imperador Rodolfo II.
Os dois homens já se correspondiam há algum tempo e, sabendo que Kepler se encontrava em situação precária, Ticho convidou-o a mudar-se para Praga, onde poderia viver e trabalhar como seu hóspede no castelo de Benatek. A convivência diária entre eles foi, no entanto, um pesadelo. Kepler pretendia trabalhar em paz. Encontrou o castelo em reformas para a instalação do observatório e cheio de visitantes e membros da corte pessoal de Ticho Brahe. O pior é que não conseguia obter os dados que tanto desejava.
Queixou-se numa carta: "Ticho não permite que eu participe de suas experiências. Só durante as refeições, entre outros assuntos, ele menciona, de passagem, hoje o número do apogeu de um planeta, amanhã outro dado qualquer". Sabe-se lá qual seria o fim da relação entre os dois astrônomos se a morte não tivesse chegado para separá-lo dezoito meses depois do primeiro encontro. Ticho Brahe morreu inesperadamente e foi enterrado em Praga em 4 de novembro de 1601. Dois dias mais tarde, Kepler foi nomeado para sucedê-lo no posto de Matemático Imperial. Em Praga, Kepler ficou os onze anos seguintes, boa parte dos quais dedicou a cuidadosas observações da trajetória do planeta Marte.
Foi o período mais fértil de sua vida, sobretudo porque, confrontado com o fato de que Marte não se comportava nem como desejava Ticho Brahe nem como descrito no trabalho de Copérnico, pôs-se a elaborar sua própria teoria para dar seqüência às observações. Em 1601, publicou sua obra-prima, Astronomia Nova, que trazia duas de suas três leis planetárias fundamentais. A primeira delas afirma que os planetas descrevem órbitas em forma de elipses com o Sol em um dos seus focos. A segunda lei afirma que a velocidade dos planetas varia de tal forma que percorrem áreas iguais em tempos iguais.
São as primeiras leis naturais no sentido moderno, na medida em que utilizam termos matemáticos para descrever relações universais governando fenômenos particulares. Com ela, a Astronomia separou-se da Teologia para unir-se à Física. Não foi um divórcio fácil. Desde os gregos, filósofos afirmavam que os astros percorriam trajetórias circulares em velocidade uniforme. A tarefa dos astrônomos consistia, sobretudo, em construir sistemas cada vez mais complicados para conciliar essa "verdade decretada" com as observações que iam fazendo com seus próprios olhos. 
Um dos sistemas em voga no tempo de Kepler distinguia dois centros para o sistema solar: um centro físico, que seria o próprio Sol, e um centro geométrico (não coincidente com o primeiro) eqüidistante de todos os pontos da órbita circular. Dava-se, igualmente, muita importância ao chamado punctum equans, ponto a partir do qual o planeta apresentava a velocidade angular constante. Kepler gastou cinco anos e cobriu novecentas páginas com cálculos em letra pequena na tentativa de determinar esses três pontos para o caso de Marte. Fracassou. Somente então, esgotadas todas as possibilidades, ousou examinar a hipótese de astros percorrendo órbitas não circulares em velocidades variáveis. Refez os cálculos e sem mais idéias preconcebidas e dentro de um ano encontrou as duas primeiras leis.
Nunca teria chegado a esse resultado se não tivesse herdado as observações acumuladas ao longo dos anos por Ticho Brahe. No último estágio de seus cálculos, empregou 180 medidas diferentes da distância entre o Sol e Marte. Mas de nada lhe adiantariam todos esses números se não possuísse também poderosa intuição sobre os mecanismos do Universo. Foi assim, por exemplo, que muito antes de Newton ele já descrevia a gravitação universal nos seguintes termos: "Se duas pedras fossem colocadas em qualquer lugar do espaço, uma perto da outra, e fora do alcance de um terceiro corpo material, unir-se-iam, à maneira dos corpos magnéticos, num ponto intermediário, aproximando-se cada uma em proporção à massa da outra".
E mais adiante: "Se a Terra cessasse de atrair as águas do mar, os mares se ergueriam e iriam ter à Lua (...)". "Se a força de atração da Lua chega até a Terra, segue-se que a força de atração da Terra, com maior razão, vai até a Lua e ainda mais longe." Caso Kepler tivesse se preocupado em conciliar a idéia da atração universal com suas próprias leis, poderia ter ido ainda mais longe. Mas parece ter recuado por uma espécie de repugnância filosófica partilhada por Galileu, Descartes - e o próprio Newton, de início -  diante dessa força fantasmagórica capaz de agir a distâncias astronômicas, sem agente intermediário e de maneira instantânea, um conceito aparentemente místico e não "científico", indigno de cientistas modernos como ele. 
Outros interesses e preocupações iriam ocupá-lo nos anos seguintes. Galileu publicou na Itália o Mensageiro das Estrelas, em que anunciava algumas descobertas feitas com o uso de um novo e revolucionário aparelho, o telescópio - e a que mais controvérsias causou foi a descoberta de quatro planetas (na verdade, satélites) girando ao redor de Júpiter. Kepler foi o primeiro nome de peso a apoiar o trabalho de Galileu, mas nem por isso conseguiu que estes lhe enviasse um telescópio para suas próprias observações. Quando conseguiu um, emprestado pelo duque de Colônia, escreveu Dioptrice, um tratado no qual lança as bases da Ótica, novo ramo da Física.
Com 141 definições, axiomas e proposições precisas e austeras, o tratado é uma exceção na sua obra cheia de digressões filosóficas. O ano de 1611 trouxe-lhe uma série de desgraças. Rodolfo II, seu protetor, foi obrigado a abdicar do trono, a vida em Praga tornou-se insuportável pelos efeitos acumulados da guerra civil e das epidemias. Morreram-lhe a mulher e um filho. Conseguiu conservar o posto de Matemático Imperial, mas foi transferido para a cidade de Linz, na Áustria, onde viveria catorze anos, até a idade de 55. Ali também não lhe faltaram peripécias. Casou-se novamente e dessa vez parece ter sido mais feliz. Susanna deu-lhe sete filhos. Em compensação, enfrentou horas dramáticas durante o processo de sua própria mãe, acusada de feitiçaria. Ainda assim continuou produzindo e, em 1618, terminou Harmonice Mundi (Harmonia do Mundo), uma espécie de síntese geral englobando Geometria, Música, Astrologia e Astronomia.
O fracasso dessa ambição desmedida só não foi absoluto porque, no meio de toda a barafunda que é o livro, aparece anunciada com toda a clareza a sua terceira lei sobre as órbitas planetárias: "Os quadrados dos períodos de revolução de dois planetas quaisquer estão entre si como os cubos de suas distâncias médias do Sol". Nos onze últimos anos que ainda lhe restariam de vida, Kepler publicou mais duas obras importantes: a Epitome astronomiae copernicanae e as Tabulae rudolphinae. Na Epitome ele demonstra que as leis planetárias originalmente deduzidas para o caso de Marte também são válidas para todos os outros planetas conhecidos, também para a Lua e para os satélites de Júpiter.
As Tabulae rudolphinae - assim batizadas em honra do imperador Rodolfo II - são as observações de Ticho Brahe, organizadas e ampliadas pelo próprio Kepler. Além de tabelas e regras para a localização dos planetas, o livro traz um catálogo de pouco mais de mil estrelas. Com a Europa convulsionada  pela Guerra dos Trinta Anos, a vida particular de Kepler tornou-se cada vez mais problemática. Parte de Linz foi destruída por um incêndio durante a revolução camponesa de 1626 e ele deixou a cidade sem planos definitivos. Viveu um ano em Ulm, visitou Praga e acabou se instalando no condado de Sagan, na Silésia. Estava na miséria. O salário de Matemático Imperial, teoricamente muito bom, raramente chegava a ser pago. Em outubro de 1629, tomou o rumo de Viena, nova sede da corte, com a idéia de cobrar pelo menos parte do que lhe era devido. Morreu no caminho, poucos dias depois de chegar à cidade de Ratisbona - ou a Regensburg, segundo outra versão -, em 15 de novembro de 1630. Sua sepultura acabou destruída.

As três leis, em resumo

1 - A órbita de um planeta P tem a forma de elipse com o Sol S em um dos seus focos. T é a Terra.
2 - Os planetas percorrem áreas iguais em tempos iguais, como para ir de B a A, de D a C, de F a E. As áreas BSA, DSC e FSE são iguais.
3- Os quadrados dos períodos de revolução de dois planetas quaisquer estão entre si da mesma forma que os cubos de suas distâncias médias do Sol. Isso se aplica também a Urano, Netuno e Plutão, que Kepler não chegou a conhecer.

Por analogia entre a idéia e a observação.

Por Albert Einstein

Em nossos tempos, justamente os momentos de grandes preocupações e de grandes tumultos, os homens e suas políticas não nos fazem muito felizes. Por isso estamos particularmente comovidos e confortados ao refletirmos sobre um homem tão notável e tão impávido quanto Kepler. No seu tempo, a existência de leis gerais para os fenômenos da natureza não gozava de nenhuma certeza. Por conseguinte, ele devia ter uma singular convicção sobre essas leis para lhes consagrar, dezenas de anos a fio, todas as suas forças, num trabalho obstinado e imensamente complicado.
Com efeito, ele procura compreender empiricamente o movimento dos planetas e as leis matemáticas que o expressam. Está sozinho. Ninguém o apoia nem o compreende. Copérnico fizera notar, antes dele, que o melhor meio de compreender e de explicitar os movimentos aparentes dos planetas consiste em considerar esses movimentos como revoluções ao redor de um suposto ponto fixo, o Sol. Portanto, se o movimento de um planeta ao redor do Sol como centro fosse uniforme e circular, seria singularmente fácil descobrir, a partir da Terra, o aspecto desses movimentos. Mas, na realidade, os fenômenos são mais complexos e o trabalho do observador muito mais delicado. Foi preciso primeiro determinar tais movimentos empiricamente, utilizando as tabelas de observação de Ticho Brahe,. Somente  depois desse enfadonho trabalho, tornou-se possível encarar ou sonhar com as leis gerais a que se moldariam esses movimentos.
Mas o trabalho de observação dos movimentos reais de revolução é muito árduo e, para tomar consciência deles, é preciso meditar na evidência:  jamais se observa em momento determinado o lugar real de um planeta. Sabe-se somente em que direção ele é observado da Terra, que, por seu lado, perfaz ao redor do Sol um movimento cujas leis ainda não são conhecidas. As dificuldades pareciam praticamente insuperáveis.
Kepler viu-se forçado a encontrar o meio para organizar o caos. A princípio, ele descobre que é preciso tentar determinar o movimento da própria Terra. Ora, esse problema seria simplesmente insolúvel se só existisse o Sol, a Terra, as estrelas fixas, com a exclusão dos outros planetas. Porque se poderia, empiricamente, determinar a variação anual da direção da linha reta Sol-Terra (movimento aparente do Sol em relação às estrelas fixas). Mas seria só isso. Poder-se-ia também descobrir  que todas essas direções se situariam num plano fixo em relação às estrelas, na medida em que a precisão das observações recolhidas na época permitira formulá-lo. Porque ainda não existia o telescópio!
Ora, era preciso determinar como a linha Sol-Terra evolui ao redor do Sol. Kepler notou então que, a cada ano, regularmente, a velocidade angular desse movimento se modificava. Mas essa verificação não ajudou muito, porque não se conhecia ainda a razão por que a distância da Terra ao Sol variava. Se apenas se conhecessem as modificações anuais dessa distância, ter-se-ia podido determinar a verdadeira forma da órbita da Terra e a maneira como se realiza.
Kepler encontrou um processo admirável para resolver o dilema. Em primeiro lugar, de acordo com os resultados das observações solares, ele viu que a velocidade do percurso aparente do Sol contra o último horizonte das estrelas fixas é diferente nas diversas épocas do ano. Mas viu também que a velocidade angular desse movimento permanece sempre a mesma na mesma época do ano astronômico. Portanto, a velocidade de rotação da linha Terra-Sol é sempre a mesma, se está dirigida para a mesma região das estrelas fixas. Pode-se, então, supor que a órbita da Terra se fecha sobre si mesma e que ela a realiza todos os anos da mesma maneira.
Essa descoberta já significou um progresso. Mas como determinar a verdadeira forma da  órbita da Terra? Imaginemos uma lanterna M, colocada em algum  lugar no plano da órbita, que lança viva luz e conserva uma posição fixa, conforme já verificamos. Ela constituirá então, para a determinação da órbita terrestre, uma espécie de ponto fixo de triangulação ao qual os habitantes da Terra poderiam se referir em qualquer época do ano. Precisemos ainda que essa lanterna está mais afastada do Sol do que da Terra. Graças a ela, pode-se avaliar a órbita terrestre.
 Ora, a cada ano, existe um momento em que a Terra T se situa exatamente sobre a linha que liga o Sol S à lanterna M. Se, nesse momento,  se observar da Terra T a lanterna M, essa direção será também a direção SM (Sol-lanterna). Imaginemos essa última direção traçada no céu. Imaginemos agora uma outra posição da Terra, em outro momento. Já que, da Terra, se pode ver tão bem o Sol S quanto a lanterna M, o ângulo em T do triângulo STM se torna conhecido. Mas conhece-se também pela observação direta do Sol a direção ST em relação às estrelas fixas, ao passo que anteriormente a direção da linha SM em relação às estrelas fixas fora determinada de uma vez por todas.  Conhece-se igualmente no triângulo STM o ângulo em S. Portanto, escolhendo-se à vontade uma base SM, pode-se traçar no papel, graças ao conhecimento dos dois ângulos em T e em S, o triângulo STM. Será então possível operar assim várias vezes durante o ano e, de cada vez, se desenhar no papel um localização para a Terra T, com a data correspondente e sua posição em relação à base SM, fixa de uma vez por todas. Kepler determinou assim, empiricamente, a órbita terrestre.
Porém, objetarão, onde é que Kepler encontrou a lanterna M? Seu gênio, sustentado pela inesgotável e benéfica natureza, ajudou-o a encontrar. Podia, por exemplo, utilizar o planeta Marte. Sua revolução anual, isto é, o tempo que Marte leva para realizar uma volta ao redor do Sol, era conhecida. Pode acontecer o caso em que Sol, Terra, Marte se encontrem exatamente na mesma linha. Ora, essa posição de Marte repete-se a cada vez depois de um, dois etc. anos marcianos, porque Marte realiza uma trajetória fechada. Nesses momentos conhecidos, SM apresenta sempre a mesma base, ao passo que a Terra se situa sempre em um ponto diferente de sua órbita. Portanto, nesses momentos, as observações sobre o Sol e Marte oferecem um meio para se conhecer a verdadeira órbita da Terra, pois o planeta Marte reproduz nessa situação a função de lanterna imaginada e descrita acima.
Kepler descobriu assim a forma justa da órbita terrestre, bem como a maneira pela qual a Terra a realiza. Temos de admirar e glorificar Kepler por sua intuição e sua fecundidade. A órbita terrestre estava então empiricamente determinada; conhece-se a qualquer momento a linha SA em sua posição e grandeza verdadeiras. Portanto, em princípio, não devia ser  muito mais difícil para Kepler calcular, pelo mesmo processo e por observações, as órbitas e os movimentos dos  outros planetas. Mas na realidade isso apresentava enorme dificuldades, porque as matemáticas de seu tempo ainda não eram primárias.
Contudo, Kepler ocupou sua vida com uma segunda questão, igualmente complexa. As órbitas, ele as conhecia empiricamente, mas seria preciso deduzir suas leis desses resultados empíricos. Ele estabeleceu uma suposição sobre a natureza matemática da curva da órbita e foi verificá-la depois por meio de enormes cálculos numéricos. E, se os resultados não coincidiam com a suposição, ele imaginava outra hipótese e verificava de novo. Executou prodigiosas pesquisas e obteve um resultado conforme a hipótese ao imaginar o seguinte: a órbita é uma elipse da qual o Sol ocupa um dos focos. Encontrou então a lei pela qual a velocidade varia durante uma revolução, no ponto em que a linha Sol-planeta realiza, em tempos idênticos, superfícies idênticas. Enfim, Kepler descobriu que os quadrados de durações de revolução são proporcionais às terceiras potências dos grandes eixos de elipses.
Nós admiramos esse homem maravilhoso. Porém, para além desse sentimento de admiração e veneração, temos a impressão de nos comunicar não mais com um ser humano mas com a natureza e o mistério de que estamos cercados desde nosso nascimento. A razão humana, eu o creio muito profundamente, parece obrigada a elaborar antes e espontaneamente  formas cuja existência na natureza se aplicará a demonstrar em seguida. A obra genial de Kepler prova essa intuição de maneira particularmente convincente. Ele dá testemunho de que o conhecimento não se inspira unicamente na simples experiência, mas fundamentalmente na analogia entre a concepção do homem e a observação que faz. 

O veemente advogado de Katherine

Entre 1615 e 1629, 38 mulheres acusadas de feitiçaria foram queimadas vivas na praça principal de Weill, a aldeia onde nasceu Kepler. Em Leomberg, a localidade vizinha, outras seis tiveram a mesma sorte, apenas na primavera de 1615. Katherine, a mãe de Kepler, que estava vivendo em Leomberg e era especialmente malquista, logo se viu cercada por suspeitas. Segundo se comentava, ela teria oferecido bebidas à mulher de um certo Bastian Meyer e ao mestre-escola Beutelspacher. O mestre-escola ficou paralítico e a senhora Meyer morreu de mal súbito. Também morreram os dois filhos do alfaiate Daniel Schmidt, supostas vítimas de seu mau-olhado. Diziam todos na aldeia, enfim, que ela era capaz de entrar nas casas através das portas fechadas e que mandara o coveiro desenterrar o crânio de seu próprio pai para fazer uma taça.
Mas o que parece ter desencadeado a abertura do processo foi uma briga com a mulher do vidraceiro Jacob Reinho, cujo irmão tinha certa influência por ser barbeiro da corte do duque de Wurttemberg. Nos seis anos seguintes, deixando de lado antigos desentendimentos, Kepler dedicou-se à tarefa de salvar sua mão da fogueira. Sua conhecida veemência parece ter impressionado desfavoravelmente o escrivão que deixou anotado: "A acusada apareceu neste tribunal acompanhada, infelizmente, pelo filho Johannes Kepler, matemático". A fase final do processo demorou um ano. O ato de acusação continha 49 itens e o da defesa, redigido em sua maior parte pelo próprio Kepler, se estendia por 128 páginas. Katherine foi finalmente libertada, mas não pôde voltar a Leomberg. A população local estava decidida a linchá-la.

C=168.267

Um Espelho para o Cosmo - Astronomia



UM ESPELHO PARA O COSMO - Astronomia



A saga da construção do Telescópio Espacial Hubble, o mais perfeito instrumento ótico já construído, é um prodígio de rigor e criatividade.

Há três anos os astrônomos esperam por esse dia. Finalmente, se não surgirem novos problemas, em março 1990 o Telescópio Espacial Hubble foi despachado ao espaço, embalado na nave tripulada Discovery; para ficar em órbita da Terra, a 550 mil metros de altitude. Com o lançamento prejudicado pelos sucessivos atrasos no programa espacial americano, o telescópio repousou num galpão esterilizado na Califórnia. Quase tão fascinante quanto as descobertas que graças a ele será possível realizar foi sua construção, que levou cinco anos. A começar pela  manufatura do seu espelho principal, cuja superfície refletirá e focalizará a luz dos astros, que será depois transmitida à Terra como uma emissão de TV. O jornalista americano Terry Dunkle acompanhou a aventura. Seu relato:
Em 1981, quando foi escolhida pela NASA para executar o projeto do espelho do Hubble, a Perkin-Elmer Corporation, empresa americana especializada em instrumentos óticos e eletrônicos, teve que deixar de lado todas as outras encomendas. Um exército de engenheiros desenhou então um tubo de 13 metros de comprimento , dotado de sensores capazes de focalizar um vaga-lume a milhares de quilômetros.  Esse tubo serviu de abrigo ao espelho de 2m47 metros de diâmetro, no formato de uma rodela de abacaxi com um furo no centro. Quando o telescópio ficou pronto, cinco anos e 1,5 bilhão de dólares depois, estava preparado para enxergar o espaço com uma nitidez sete vezes maior do que qualquer outro equipamento semelhante já construído pelo homem.
Mas a manufatura do espelho- um trabalho caro e artesanal - havia começado alguns anos antes, em 1977, quando foi feita a moldagem do vidro. Para que o conjunto do Hubble, um engenho de 11 toneladas, não ficasse ainda mais pesado, o que causaria problemas no espaço, o espelho não foi projetado como um corpo sólido, mas como duas finas fatias de silicato de titânio - material de pouca dilatação térmica -, feito um sanduíche recheado de ar. Como as duas fatias não poderiam encostar uma na outra, foram colocados ali tubos de vidro, que deram ao conjunto a aparência de uma sofisticada embalagem de ovos. Assim, o espelho é 90 por cento ar. Até a curva quase hiperbólica do vidro foi obtida aquecendo-se e moldando-se o ar na forma de um telhado de cogumelo.
Até o momento em que se começou a construir o Hubble, ninguém havia pensado em fazer algo semelhante. Por isso, a NASA se cercou de todos os lados: além de encomendar a peça à Perkin-Elmer, pediu outra à empresa rival, Eastman-Kodak, reservando-se o direito de ficar com aquela que fosse de qualidade superior. Pode-se portanto imaginar o nervosismo do engenheiro Jack Kurdock, da Perkin-Elmer, quando num dia cinzento de novembro de 1981, junto com três companheiros de equipe, se preparava para cobrir o espelho com uma camada refletora de alumínio. Se o trabalho apresentasse qualquer defeito, estaria prejudicado o sonho daqueles técnicos de ajudar os astrônomos a ver mais longe no espaço e no tempo, quem sabe até o início do Universo.
Para que o telescópio funcionasse direito, isto é, transformasse em estrelas e galáxias os brilhos captados a milhares de anos-luz de distância, o espelho principal deveria aproveitar o máximo da luz coletada. E o máximo de aproveitamento só poderia ser obtido se o espelho fosse um bom refletor, algo que o desempenho do engenheiro Kurdock precisaria garantir. "Ele teria de refletir pelo menos 70 por cento da luz no ultravioleta", lembra o engenheiro. "Mas essa porcentagem é maior do que aquela obtida em qualquer telescópio feito anteriormente".
A fim de vencer esse desafio, as especificações da cobertura eram as mais exigentes que Kurdock, um homem calmo, com pelo menos vinte anos de experiência nesse tipo de serviço, já tinha enfrentado. Para começar, a Perkin-Elmer necessitou construir uma câmara de vácuo espacial, de quase dois andares, com paredes de aço de 2 centímetros de espessura e uma grande janela no teto. "Era nessa fenda que o espelho entrava", explica Kurdock. Ele mostrou como o grande disco, a rodela de abacaxi, era colocado num anel gigantesco de metal, capaz de transportá-lo feito um elevador até a base da câmara. Ali ficavam oito recipientes cheios de alumínio, ligados a canhões de elétrons.
Se a superfície do espelho contivesse qualquer traço de poeira, esta se vaporizaria na câmara de vácuo e cobriria o espelho com uma fina camada de moléculas de hidrocarbonetos. Por isso, o disco teria de ser lavado com água destilada e colocado para secar como um lençol no varal. Mas havia um problema: sendo ele muito pesado para ficar de pé, corria o risco de se espatifar depois do banho. Daí, foi necessário desenhar uma espécie de fôrma de bolo feita de aço, que, ajustada nas costas do espelho (que não receberia cobertura), ajudaria a distribuir o peso e a eliminar a tensão. Todos os passos da operação limpeza foram cuidadosamente planejados. "Existia o perigo real de deixar cair o espelho nessa fase", comenta Kurdock, lembrando-se de um incidente infeliz ocorrido no passado.
Alguns anos antes, com efeito, a Perkin-Elmer fora escolhida para fazer o espelho de quase 1 metro do telescópio Copernicus, também da NASA. Em dado momento do processo, quatro operários tiveram de transportá-lo. Um deles tropeçou e o espelho caiu, espalhando vidro para todos os lados. "Quando se trabalha com um material tão delicado, você tem de estar pronto para problemas desse tipo", diz o resignado Kurdock. O próprio espelho do Hubble já tinha pregado algumas peças. Numa primeira fase, que durou dois anos, ele foi polido, para perder qualquer rugosidade. Certa vez, durante uma inspeção de rotina, um dos operários percebeu logo abaixo da superfície gelada do vidro um risco finíssimo que refletia a luz de uma forma que lembrava uma xícara de chá.
"Foi um momento de pânico", recorda Ronald Rigby, engenheiro-chefe encarregado dessa parte da operação. Num grande pedaço de vidro, até o risco mais fino significa um desastre. Uma mudança de temperatura, por exemplo, pode abalar a estrutura do espelho e provocar uma rachadura monstruosa. Assim, se a xícara de chá não fosse removida e a ferida isolada, o risco poderia crescer. O problema era tão sério que quase provocou uma briga entre as pessoas que trabalhavam no projeto. Rigby queria atacar o vidro com uma broca e fazer um buraco que isolasse totalmente a área. Outro engenheiro, cujo trabalho era prever se o Hubble poderia sobreviver ao lançamento na Atlantis, temia os prejuízos que essa abertura traria ao espelho.
Por isso, ele preferia não abrir buraco algum, mas usar a broca em volta da fatia do espelho atingida, e somente ao redor do risco. Embora causasse menos estrago, essa solução representava outro sério perigo, pois a pressão da ferramenta em volta da xícara de chá poderia provocar uma grande rachadura. Mesmo assim, foi a técnica escolhida. Isso porque o buraco que Rigby pretendia fazer poderia poluir com poeira de vidro o interior praticamente oco do espelho. No espaço, a poeira flutuaria pelo telescópio, prejudicando irremediavelmente seu foco. Assim, após três semanas de discussão e pânico, eles arriscaram a operação limpeza por cima. Em seguida, fazendo figa, esperaram pelo crack da rachadura - que, afinal, não aconteceu.
Apesar disso, muita gente na Perkin-Elmer ficou irritada com a alteração. Deixem para lá, disse Rigby, com a experiência de 25 anos na manufatura de espelhos de telescópios. "Quando terminarmos, vocês se lembrarão dela como de uma verruga no ombro de uma mulher bonita". Ele se referia à fase final do polimento, para a qual foi construída uma espécie de cama de faquir, feita de barras de titânio, tendo em cada ponta uma safira, ajustada nas costas do espelho. Custo da peça: 2 milhões de dólares. Apoiado confortavelmente por baixo nessa cara armação, que permitia que a pressão exercida sobre o disco obedecesse à curvatura da superfície, o espelho foi esfregado dia e noite durante meses.
Foi uma tarefa exaustiva e irritante. O polimento exige uma técnica curiosa, que consiste em esfregar milímetro por milímetro do disco de vidro, coberto com uma substância abrasiva, no caso um pouco de piche. Para que o piche não risque o vidro, usa-se sobre ele um pó que pode ser - por incrível que pareça - rouge. Utilizando um dispositivo de laser que, ao bater na superfície do vidro, produzia uma série de padrões de interferência, os engenheiros foram capazes de descobrir irregularidades de bilionésimos de milímetro. Fazendo uma comparação, eles calcularam que se o espelho tivesse o tamanho do golfo do México suas ondas não teriam mais de 1 milímetro de altura. Diante de tamanha perfeição, a responsabilidade final de todos ficou ainda maior. Quando chegou o grande dia da cobertura, em novembro de 1981, o disco, impecavelmente limpo e polido, foi instalado na câmara de vácuo.
Durante uma semana, bombas tiraram todo o ar interno, até que a pressão ficou mil vezes menor do que aquela que o telescópio encontrará a 550 mil metros da Terra. Em seguida, a equipe de Kurdock começou a rodar o espelho devagar, a fim de obter uma cobertura uniforme. Foram ligados os canhões de elétrons para que os raios de alta energia vaporizassem o alumínio. Este, tornando-se mais leve, se elevaria, agarrando-se ao vidro. A camada de alumínio não deveria ter mais de 80 nanômetros - cada nanômetro vale um milionésimo de milímetro - e seria protegida por uma camada de fluoreto de magnésio.
Três minutos depois de iniciada a operação, tudo estava terminado. Aberta a câmara, os técnicos entraram para ver o resultado da obra. Por um instante, pensaram que alguém havia roubado o espelho. Nada ali era visível, apenas um teto inexplicavelmente alto. "Percebi depois que estava olhando para um reflexo num espelho com um brilho fantástico", conta Kurdock. Mais tarde, os testes mostraram que a cobertura tinha 80 por cento de reflexão, dez a mais do que a NASA havia exigido. Os astrônomos sonhavam com um aproveitamento de 47 por cento da luz coletada pelo telescópio. Conseguiram 57 por cento.
É claro que, depois de uma obra dessas, Rigby e Kurdock foram promovidos. O primeiro está supervisionando para a NASA a construção do futuro telescópio espacial de raios X. Mas, quando se lembra do grande espelho do Hubble, nem ele consegue acreditar que tenha sido capaz de executar tamanha maravilha. "Nunca verei outro espelho como aquele", afirma Rigby, nostálgico. Ao que Kurdock responde com uma risada, lembrando os anos de agonia para construí-lo: "Eu também espero que nunca mais". O engenheiro William Fastie, da NASA, que acompanhou o trabalho, dá o veredicto final: "O Telescópio Espacial Hubble tem o espelho mais perfeito já construído. Não tenho dúvidas de que com ele enxergaremos centenas de milhões de anos-luz além do que esperávamos". 

A odisséia do Hipparcos

No jogo arriscado das expedições ao espaço, muitas vezes a euforia e a decepção viajam de mãos dadas. Euforia era o que não faltava, por exemplo na noite de 8 de agosto, na base de Kourou, na Guiana Francesa. Era o lançamento do foguete Ariane-4, levando a bordo o satélite Hipparcos, a estrela do programa da agência espacial européia (ESA). O lançamento prometia colocar em órbita a 36 mil quilômetros da Terra o Hipparcos, um projeto de dez anos e 390 milhões de dólares. Seu grandioso objetivo: elaborar um catálogo da posição das estrelas no céu, com precisão 50 vezes maior do que a obtida pelos melhores observadores.
Mas as semanas que se seguiram à euforia do lançamento foram de decepção. Uma falha no seu motor principal obrigou o Hipparcos a habitar uma órbita elíptica a meros 200 quilômetros da Terra na sua passagem mais próxima. As tentativas para reativar o engenho fracassaram e o motor auxiliar só poderia elevar o satélite a 800 quilômetros. A essa altura, ele seria obrigado a atravessar o cinturão de Van Allen - zona carregada de partículas que envolve a Terra e que poderia prejudicar seus painéis solares.
O Hipparcos, sigla em inglês de Satélite de Coleta de Paralaxe de Alta Precisão, também presta uma homenagem ao astrônomo grego Hiparco, que, dois séculos antes da era cristã, foi o primeiro a determinar a posição das estrelas. Hiparco ainda calculou a distância da Terra à Lua, medindo o paralaxe lunar, o ângulo formado pelo seu deslocamento aparente como resultado do movimento da Terra em relação ao Sol. O satélite europeu foi concebido para usar os mesmos métodos a fim de localizar 120 mil estrelas num raio de 3 mil anos luz do sistema solar.
O Hipparcos deveria observar cada estrela de dois pontos opostos na rotação da Terra em volta do Sol. A cada vez, a estrela estará situada em posição diferente em relação aos astros mais afastados. Calculando-se o ângulo formado por essa variação, obtém-se sua distância real. O telescópio é um monumento à precisão: instalado na Torre Eiffel, em Paris, enxergaria uma moeda na mão de uma pessoa no topo do Empire State Building, em Nova York, a 7 mil quilômetros. Se ele sobreviver pelo menos seis meses na órbita em que o mau motor o deixou, cumprirá a missão pela metade. Para a astrônoma Ana Stefanovitch, do Observatório de Medon, em Paris, "ainda assim seu catálogo será duas vezes melhor do que os que temos agora".

O que é o quê no Hubble

O Telescópio Espacial é um grande tubo de 13 metros de comprimento. A luz que entra pela abertura bate no espelho principal e se reflete num outro menor, o secundário. Depois volta e atravessa o orifício do espelho principal para se concentrar nas câmaras e outros instrumentos científicos. Controladores da Terra mandam instruções por rádio aos computadores de bordo. Por sua vez, as imagens do Hubble, traduzidas em sinais digitais, são transmitidas para as antenas da NASA.
1 - Abertura
Fecha automaticamente para proteger os instrumentos sensíveis, caso o espelho focalize o Sol por acidente.
2 - Painéis solares
Abastecem o telescópio da energia necessária à operação dos equipamentos.
3 - Espelho principal
A cobertura permite detectar, além da luz visível, a luz ultravioleta.
4 - Antena de rádio
Faz ligação com a Terra: o Hubble é capaz de transmitir 1 milhão de unidades de informação por segundo.
5 - Espelho secundário
Colocado 5 metros à frente do principal, ajuda a focalizar a luz nos instrumentos de bordo.
6 - Câmaras
A primeira câmara obtém as imagens mais vistosas. A segunda capta o brilho de objetos pouco luminosos e distantes.
7 - Fotômetro
Permite medidas precisas da intensidade da luz dos astros - um dado importante para determinar sua posição no espaço.
8 - Espectrógrafos
Medem a composição química dos astros. Podem assim obter informações sobre seus movimentos, temperatura e características físicas.

Câmaras, ação, luzes

No fim da década de 20, o astrônomo americano Edwin Hubble (1889-1953) comprovou que o Universo conhecido não é estático, mas continua a se expandir desde que teria surgido de uma explosão inicial que espalhou partículas elementares por todos os lados. Ele sustentou também que a Via Láctea é apenas uma entre milhares de galáxias em expansão. Agora, a expectativa dos cientistas que deram o nome de Hubble ao mais importante instrumento astronômico da atualidade é utilizá-lo para viajar ao passado e chegar o mais rápido possível ao momento do tão falado Big Bang, há cerca de 15 bilhões de anos. Como isso será possível?
Livre do embaçamento da atmosfera da Terra, que bloqueia uma parte da luz visível e quase toda a radiação ultravioleta, o Hubble poderá multiplicar por cinqüenta o número de corpos celestes ao alcance dos dois maiores telescópios do mundo - o de Palomar, na Califórnia, Estados Unidos, com lentes de 5 metros de diâmetro, e o de Zelenchukskaya, no Cáucaso, União Soviética, com lentes de 6 metros. Desse modo, os quasares, os mais remotos pontos luminosos já observados, a pelo menos 12 bilhões de anos-luz da Terra, podem aparecer como galáxia no auge da juventude.
Ao enxergar mais longe no espaço, os astrônomos estarão flagrando os objetos celestes como eram em épocas anteriores, por causa do tempo que a luz demora para atravessar distâncias cósmicas. "É impossível prever todas as maravilhas ao alcance do Hubble", entusiasma-se Lyman Spitzer, astrônomo da Universidade de Princeton, nos Estados Unidos, considerado o idealizador do Telescópio espacial. Spitzer lembra que, "antes das observações feitas com o telescópio Monte Palomar, há menos de trinta anos, os próprios quasares eram desconhecidos".
Apesar disso, a anatomia do Hubble nada tem de especial. Trata-se de um telescópio refletor comum, conhecido como Cassegrain, em homenagem ao físico francês do século XVII, inventor do modelo, que usa a combinação ótica de dois espelhos. Os raios luminosos vindos dos astros focalizados batem no espelho principal de 2,4 metros, côncavo, e se refletem em outro menor, de 30 centímetros, convexo, colocado num tubo 5 metros à frente. Em seguida voltam e atravessam um orifício central de 60 centímetros do espelho maior para enfim se concentrar no compartimento dos aparelhos. Ali, um fotômetro e dois espectrômetros analisam a luz para determinar a composição química e a velocidade dos corpos observados, enquanto duas câmaras fotografam os astros na luz visível, no ultravioleta e no infravermelho.
A primeira câmara, de grande alcance, capta todos os raios luminosos. A segunda, mais seletiva, capta brilhos muito fracos. Como acontece nos melhores telescópios terrestres, as câmaras do Hubble usarão dispositivos do tipo CCD, semelhantes a câmaras de vídeo e cuja sensibilidade é cinqüenta vezes superior à dos filmes fotográficos. Painéis solares com 2,4 quilowatts de capacidade serão responsáveis pelo abastecimento de energia. Além desses equipamentos, o Hubble terá um sensor estelar e um giroscópio, que permitirão a sua extraordinária pontaria. Assim, durante os quinze anos de vida útil do engenho, galáxias hoje indistintas nos telescópios comuns se revelarão como uma multidão de estrelas. E, se existirem, até sistemas planetários desconhecidos poderão aparecer em torno de estrelas próximas do Sol.
Se o Hubble estivesse na Terra, bastaria aos astrônomos apontá-lo para o ponto desejado, na ocasião e hora propícias, a fim de fazerem as suas observações. Mas, estando ele a 550 mil metros do planeta, as operações de manobra do instrumento,. como se pode imaginar, serão um pouco complicadas. Segundo o astrônomo brasileiro Francisco Jablonski, do Instituto de Pesquisas Espaciais (INPE), "vão exigir paciência, planejamento exaustivo e um complexo programa de computador para tratamento e análise de dados". Por esses motivos, a NASA criou o Instituto de Ciências do Telescópio Espacial, em Baltimore, Maryland.
Ali, centenas de astrônomos já estudam as propostas de utilização do Hubble, apresentadas por cientistas do mundo todo, e planejam a sua movimentada agenda de trabalho. O astrônomo Ivo Busko, também do INPE, é o único brasileiro a participar dessa fase da operação. Ele está ajudando a criar um catálogo de referência das estrelas, uma espécie de enciclopédia do espaço, guardada em discos óticos. Com os dados desse catálogo, os astrônomos poderão ter em mãos um mapa tridimensional das vizinhanças dos astros que pretendem observar. Esperava-se que outras informações igualmente inéditas fossem fornecidas pelo satélite francês Hipparcos, lançado no mês de agosto último.
Quem quiser o auxílio do Telescópio Espacial para suas observações terá de entrar numa extensa fila de espera: uma primeira triagem selecionou 162 projetos de pesquisa. Os cinco instrumentos de Hubble têm dezenas de modos de operação que envolvem diferentes combinações de filtros, aberturas e foco. Todas as comunicações com o telescópio serão feitas via rádio pela antena rastreadora de satélites da NASA no Novo México e controladas pelo Centro Espacial Goddard em Maryland. Ou seja, tanto as instruções da Terra como a transmissão de imagens do espaço se darão nos moldes habituais dos satélites de comunicação.

segunda-feira, 3 de setembro de 2012

O Fascínio dos Cometas - Astronomia


O FASCÍNIO DOS COMETAS - Astronomia



Sempre foram um espetáculo para os observadores. Mas os cientistas também querem arrancar deles a verdade sobre a origem do sistema solar.

No Laboratório Nacional de Astrofísica, no Pico do Dias, município mineiro de Brasópolis, houve noites em que os astrônomos desviaram o foco dos telescópios das regiões mais longínquas do Universo e solenemente desprezaram a possibilidade de enxergar novas galáxias, estrelas ou até mesmo corpos estranhos como os quasares. Em vez disso, como tantos outros colegas e observadores amadores do mundo todo, eles se aglomeraram feito crianças no observatório, a 1860 metros de altura, e, sem se importar com o ar gelado da montanha, ficaram pacientemente esmiuçando o céu à procura de um risco luminoso.
"Foi emocionante", recorda o fotógrafo Rodrigo Campos, do Observatório Nacional. De setembro de 1985 a julho de 1986, sob orientação do professor Oscar Matsuura, da Universidade de São Paulo, Rodrigo tirou 280 placas fotográficas daquele risco - o caprichoso cometa Halley. Para ele, como para os demais observadores do cometa, a aparição do Halley foi um evento único, pelo qual valia a pena esquecer temporariamente todas as outras pesquisas. "Não tanto pelo visual, porque o Halley não foi tão espetacular assim. Mas pelo fascínio que cerca o seu aparecimento", explica Rodrigo. Ex-fotógrafo de publicidade que há dez anos se dedica a registrar o desfile de astros no céu, ele já viu e fotografou os cometas menos populares mas não menos importantes que o Halley, como o Giacobini-Zinner, Wilson e IRAS-Araki-Alcock.
Essa predileção pelos cometas, como ele mesmo define, não tem nada a ver com a forma majestosa desses astros - uma fita de luz de quilômetros de comprimento, às vezes mais brilhante do que qualquer estrela. Por isso, os antigos poeticamente associavam os cometas a mulheres de longas cabeleiras penteadas pelo vento para trás. E daí a origem do nome, derivado da palavra grega que significa cabelo. Mas os modernos astrônomos não estão preocupados com poesia. Para eles, os cometas são dignos de estudo como relíquias do passado, fósseis siderais de 4,6 bilhões de anos, remanescentes dos primeiros tempos de formação do sistema solar. Armazenados na chamada Nuvem de Oort, além de Plutão, estão protegidos pela distância dos efeitos da radiação e do impacto dos meteoritos. Além disso, não manifestam naquelas lonjuras atividade vulcânica nem outros fenômenos que afetaram satélites e planetas.
De vez em quando, por algum motivo ainda mal compreendido - que pode ser a passagem de uma estrela ou mesmo o efeito das marés da Via Láctea (como entre a Lua e a Terra)-, rompe-se o equilíbrio gravitacional que mantém os cometas quietos e a distância, e alguns deles desabam para as vizinhanças do Sol. Isso não é muito raro. "Acho que observamos uma média de dez visitas por ano", calcula o astrônomo e matemático Masayoshi Tsuchida, da Universidade de São Paulo. "Em setembro, por exemplo, estamos recebendo o cometa Brorsen-Metcalf. Será a terceira vez que se tem conhecimento de que ele dá uma volta pelo sistema solar e a primeira prevista com antecipação".
Mas, para desapontamento do fã-clube terrestre, nem sempre - ou melhor, quase nunca - os cometas anunciam a sua chegada com a pompa do Halley. Em geral, aparecem como meros borrões no céu e fica por conta da imaginação ou do alcance dos instrumentos óticos vê-los como são. Os núcleos são uma espécie de iceberg - pedaços de rocha cobertos de gelo de cerca de 5 a 10 quilômetros de diâmetro. A medida que se aproximam do Sol, algumas porções do gelo começam a derreter. Na sua superfície formam-se gêiseres que derramam jatos de partículas finas ao redor. A gravidade do núcleo é tão pequena que qualquer lufada de gás e poeira escapa para o espaço. Assim, esses icebergs passam a ser envolvidos por uma nuvem de poeira, cristais de gelo e gás. É a coma ou cabeleira.
A última metamorfose é a mais espetacular e intrigante: aparece a cauda, ou o véu de partículas finas, sopradas em direção contrária ao Sol, sem a qual nenhum cometa consegue manter o seu prestígio. As vezes, até exageram: ganham duas ou mais caudas, uma reta, azul, de gás ionizado, outra mais curva, amarela, de poeira. Essas caudas, porém, são a mais ilusória de todas as partes do cometa - na verdade são quase um truque de ótica. Compostas de partículas ínfimas e rarefeitas, quase não têm massa. O que as torna visíveis e espetaculares é a luz do Sol refletida - como os primeiros raios da manhã que percorrem uma superfície empoeirada. O fenômeno é conhecido desde o século XVII, quando o físico inglês Isaac Newton (1643-1727) sugeriu que "a cauda de um cometa com milhares de quilômetros de comprimento, se submetida ao mesmo grau de condensação da Terra, poderia ser facilmente guardada num dedal".
Em fotos tiradas por um satélite da Força Aérea americana, descobriu-se que alguns cometas seguem uma trajetória tão próxima do Sol que acabam sendo engolidos por ele. Outros possuem órbitas quase parabólicas, com períodos de milhares de anos. Há ainda aqueles cuja passagem pelo sistema solar se restringe a uma única vez. Mas um bom número de cometas sofre uma drástica alteração de sua trajetória quando passa perto de um planeta - em geral Júpiter, o maior de todos - e por isso fica aprisionado no sistema solar. Depois de vários retornos, esses cometas perdem muito material, tornam-se menos ativos, levantam pouca poeira e a cauda deixa de ser tão espetacular.
Por tudo isso, os cometas podem ser classificados como astros inconstantes; embora relativamente freqüentes, descobri-los é quase como ganhar na loteria. "Para os astrônomos profissionais é muito mais difícil flagrá-los pela primeira vez", comenta o carioca João Luiz Kohl, do Observatório Nacional, cuja tese de doutoramento, sobre a rotação do Halley, foi feita no Observatório de Medon, em Paris. Ele explica que "no apertado cronograma das observações, não sobram noites para procurar astros tão caprichosos". Segundo Kohl, os cometas são normalmente descobertos por amadores - insistentes caçadores desses corpos celestes, que por conta própria exploram sistematicamente o espaço e percebem a presença de um ponto de luz onde só havia treva.
É o caso do fazendeiro Vicente Ferreira de Assis Neto, que observa cometas há trinta dos seus 52 anos de vida. Longe da poluição atmosférica e das luzes ofuscantes das grandes cidades, ele instalou em suas terras no município de São Francisco de Paula, no oeste de Minas, um telescópio de 30 centímetros, com o qual fez uma descoberta independente do cometa White-Ortiz-Bolelli, a 23 de maio de 1970, cinco dias depois que foi avistado pela primeira vez.
O cometa recebeu esse nome em homenagem a seus três descobridores: o então estudante australiano G.L. White e o piloto Emílio Ortiz, da Air France, e o astrônomo profissional Carlos Bolelli, do Observatório de Cerro Tololo, no Chile. Assis Neto, que mantém correspondência com a União Astronômica Internacional, não perde a esperança de dar seu próprio nome a um cometa: "Tenho certeza de que vou descobrir mais um nos próximos anos", confia. 
Por sorte, a tentativa de compreender os cometas conta com preciosos aliados do passado. Em toda a História foram catalogados cerca de mil cometas, embora algumas centenas tenham sido avistados em mais de uma aparição. Seu estranho comportamento, associado à crendice de que os movimentos dos corpos celestes influenciam os destinos humanos, fizeram com que, no passado, os cometas fossem ligados a acontecimentos excepcionais - bons e maus. Após a passagem de um cometa em 64 d.C., por exemplo, o imperador romano Nero teria ordenado uma de suas célebres matanças. A estrela de Belém, que os astrônomos modernos supõem tratar-se de uma conjunção de Júpiter e Saturno ocorrida no ano 6 a.C., foi retratada por Giotto no afresco de 1304, Adoração dos Magos, como um cometa. Outro espécime foi registrado pelas crônicas européias do século XII, coincidindo com a época das cruzadas - e tanto cristãos como mouros teriam pensado tratar-se de maus presságios.
O pensador grego Aristóteles, do século III a.C., acreditava que os cometas fossem gases luminescentes espalhados na atmosfera terrestre. Essa concepção só foi abandonada no século XVI, quando o astrônomo dinamarquês Tycho Brahe (1546-1601) demonstrou que o cometa de 1577 passou a pelo menos seis vezes a distância da Lua. Mesmo assim, muito tempo depois ainda se acreditava que os cometas fossem astros transitórios, bem diferentes das estrelas e planetas. Essa idéia sobreviveu até aos cálculos de Kepler, Copérnico e Galileu no século XVI sobre o movimento dos astros. Só a partir do século XVII, quando Newton mostrou que todos os corpos pesados se movem uns em torno dos outros segundo as leis rígidas de gravitação, começou-se a pensar que também os cometas deveriam ter uma órbita.
Coube a um amigo de Newton, o astrônomo, também inglês, Edmond Halley (1656-1742), provar que o cometa por ele observado em 1682 era o mesmo de 1456, 1531 e 1607 - e que os chineses já o haviam registrado desde 240 a.C. Halley previu então a sua volta para 1758. Ele morreu dezessete anos antes de ver confirmada a hipótese. Mas na data prevista, brilhando de novo entre as estrelas, lá estava o cometa - o mesmo que em 1986, 228 anos depois, causaria tanto entusiasmo entre os astrônomos do Laboratório Nacional de Astrofísica, em Minas. Se nesta sua mais recente aparição o astro que passou para a História com o nome de Halley não deu um show de primeira grandeza como se esperava, a Astronomia proporcionou um espetáculo à parte. Milhares de estudos, medições e análises - em terra e por meio de sondas espaciais - ainda estão esmiuçando todos os seus segredos.
Ao cortar a cabeleira do Halley, quando chegou a cerca de 500 quilômetros do seu núcleo, a sonda européia Giotto foi a grande estrela dos astrônomos. Ela resistiu milagrosamente à chuva de poeira e mandou 3 mil fotos eletrônicas do coração do cometa, que mede 15 quilômetros de comprimento por 4 de largura. Antes dessa sonda, outras quatro pequenas naves repletas de instrumentos - as japonesas Sakisake e Suisei e as soviéticas Vega 1 e 2 - circularam pelas imediações. Os Estados Unidos reutilizaram dois de seus satélites no espaço, a Pioneer 12, em órbita de Vênus, e o Solar Maximum Mission, para acompanhar o Halley. Depois da passagem de todas essas sondas, os cientistas do Programa Internacional de Observação do Halley puderam descrever o núcleo do cometa como "uma batata torta com a superfície coberta de irregularidades que lembram montanhas, vulcões e crateras".
Essa batata torta é uma bola de gelo e de grãos de rocha de silicatos, além de compostos moleculares, alguns dos quais orgânicos, isto é, formados à base de carbono. A presença desses compostos levou cientistas como o astrônomo inglês e dublê de escritor de ficção científica Fred Hoyle e o cingalês Chandra Wickramasinghe a sustentar uma hipótese no mínimo imaginosa: ao longo de centenas de milhões de anos, segundo eles, células primitivas, talvez bactérias espalhadas pelo espaço interestelar, teriam se incorporado a cometas quando estes se condensaram a partir da nebulosa solar. Essas células, afirmam os cientistas, poderiam ter chegado à Terra trazidas por um desses astros que se chocaram com o planeta há bilhões de anos.
Que ocasionalmente cometas atingem a Terra parece certo. Alguns cientistas acreditam, por exemplo,que uma pequena parte de um cometa chamado Encke explodiu na atmosfera da Sibéria central, a nordeste da Rússia, em 1908, causando um tremendo incêndio na floresta de Tunguska, que aniquilou árvores numa área de 500 quilômetros quadrados (SI n.º 12, ano 2). As superfícies da Lua e de outros satélites - preservados da erosão provocada por ventos e pela água - também exibem a marca de inúmeras colisões com corpos que vieram do espaço. Muitos destes, dizem os astrônomos, podem ter sido cometas - vivos e mortos. Os cometas vivos ainda estariam em plena atividade. Já os mortos teriam perdido boa parte da matéria após várias passagens pela proximidade do Sol e formariam centenas de asteróides com órbitas que cruzam a da Terra. 
Mas a idéia de que as condições típicas de um cometa seriam propicias à existência da vida é um pouco difícil de aceitar. Mesmo assim, dois cientistas ingleses - o Prêmio Nobel de Medicina de 1962, Francis Crick, co-descobridor da estrutura molecular do DNA (o constituinte fundamental dos genes), e o químico Leslie Orgel propuseram uma alternativa igualmente curiosa. Para eles, os cometas teriam trazido no núcleo os precursores químicos da vida, em forma de aminoácidos e outras moléculas. Há alguns meses, químicos do Instituto Scripps de Oceanografia, na Califórnia, identificaram dois tipos de aminoácidos de origem extraterrestre em rochas datadas de 65 milhões de anos.
A descoberta veio acrescentar um pouco mais de romance à vida já fantástica dos cometas. Discute-se, por exemplo, se um deles teria sido responsável pela extinção dos dinossauros, há 65 milhões de anos. A tese foi apresentada pela primeira vez em 1979, pelo Prêmio Nobel de Física Luis Alvarez e por seu filho, o geólogo Walter Alvarez. Para eles, um cometa ao chocar-se com a Terra produziu poeira suficiente em suspensão para que o céu escurecesse, como ocorreria hoje depois de uma guerra nuclear. A ausência de luz solar faria a temperatura cair, levando à extinção a maioria das espécies da Terra, entre elas os dinossauros.
Enquanto muitos aspectos da história dos cometas já foram compreendidos, outros ainda continuam um completo mistério. As pesquisas, portanto, prosseguem. A agência espacial americana NASA pretende lançar nos próximos anos a nave CRAF (sigla em inglês de Encontro com Cometa e Sobrevôo de Asteróide), que tentará interceptar um cometa até o final do século. Será um encontro e tanto. Segundo o astrônomo Kohl, do Observatório Nacional, "a CRAF disporá de um perfurador parecido com o que se usa nos poços de petróleo para retirar uma amostra do material que compõe o núcleo do cometa".

Na cauda das catástrofes

Quando foi exposta pela primeira vez, a idéia de que há 65 milhões de anos um cometa teria se chocado com a Terra foi recebida por muitos com desdém. Mas, para os cientistas, a associação entre catástrofes e cometas não é brincadeira. Afinal, se esses astros têm quilômetros de extensão e viajam a grande velocidade pelo mesmo pedaço do sistema solar em que está a Terra, não é improvável que mais cedo ou mais tarde um deles atinja o planeta - se é que isso já não aconteceu. Cientistas da Universidade de Boston estudam, por exemplo, o que parece ter sido uma grande cratera de 200 quilômetros de diâmetro, fotografada pelo satélite Meteosat, no oeste da Checoslováquia. O local poderia ser o ponto de impacto de um cometa.
Mas a extinção em massa dos dinossauros não foi a única da história da Terra. Os paleontólogos John Sepkiski e David Raup, da Universidade de Chicago, descobriram que a cada 26 milhões de anos, mais ou menos regularmente, plantas e animais morreram por todo o planeta. Nenhum fenômeno terrestre explica esse desaparecimento. Levantou-se então a hipótese de que, quando o Sol passa num determinado plano da Via Láctea, as espirais de poeira levantadas perturbam a Nuvem de Oort, que descarrega enxurradas de cometas em direção aos planetas.
Para outros cientistas americanos, como o físico Richard Muller, da Universidade de Berkeley, na Califórnia, o Sol teria uma companheira invisível em órbita muito longa. Em determinado momento do seu caminho, esta estrela se aproximaria da Nuvem de Oort, fazendo chover cometas em direção da Terra. Muller pensou em vários nomes para esta estrela perigosa. Escolheu Nêmesis, a deusa grega da vingança e da justiça.

C=165753


sexta-feira, 21 de outubro de 2011

Tem alguém ai? SETI

TEM ALGUÉM AÍ? SETI



Com a ajuda de potentes radiotelescópios, cientistas buscam um sinal de vida inteligente fora da Terra. Até agora, parece que ninguém quis falar com a gente. Mas há quem aposte que são boas as chances de captarmos algum sinal alienígena até 2025

Tudo o que a ciência sabe hoje leva a crer que estamos praticamente sozinhos no sistema solar. E, mesmo que não estejamos, nossas companhias não chegam nem aos pés da nossa civilização em termos de tecnologia. Mas, e se lá longe, a anos-luz de distância, houver alienígenas tão ou mais avançados do que nós? Será que eles também não estão procurando por outras formas de vida? Será que não têm os mesmos dilemas que nós sobre a vida no Universo? Quem sabe já esteja rolando uma grande festa intergaláctica e nós é que estamos longe demais de tudo? São pensamentos assim que povoam as mentes dos cientistas dos programas de busca de vida extraterrestre inteligente, mais conhecidos como Seti (Search for Extraterrestrial Intelligence).

Se você viu o filme Contato (1997), baseado no livro do astrônomo Carl Sagan, deve saber do que se trata. São cientistas que usam enormes antenas de radiotelescópios para tentar captar algum sinal vindo do espaço. Seria mais ou menos como percorrer o dial de um rádio procurando uma estação. O problema é que o "dial" do universo é gigantesco. E, até agora, todos os ruídos que captamos vinham aqui mesmo da Terra ou de algum de nossos satélites de comunicações. Melhor dizendo, quase todos.
Em agosto de 1977, o astrofísico Jerry Ehman estava trabalhando no radiotelescópio Big Ear (grande ouvido), da Universidade de Ohio, nos Estados Unidos. No meio de um monte de letras e números cuspidos pelo computador, uma seqüência fisgou os olhos de Ehman. Era uma coisa tão descomunal que ele não conseguiu pensar em nada. Apenas circulou a seqüência e escreveu WOW! (UAU!). Não era para menos. Havia um nível mínimo de força para se considerar que algum sinal valia a pena ser mais bem analisado. O WOW era 50 vezes mais forte do que esse mínimo e durou 72 segundos. Pelo jeito, os ETs haviam pregado o dedo na campainha. O sinal foi tão significativo que até hoje há pessoas buscando pela sua confirmação. Nenhuma obteve sucesso. Em 45 anos de escuta, essa foi a vez que chegamos mais perto de fazer contato. Se é que realmente havia alguma coisa lá fora.

ALÔ, ALÔ, MARCIANO
E por que os alienígenas usariam sinais de rádio para mandar uma mensagem? "Esse tipo de onda é muito eficiente", diz Seth Shostak, astrônomo sênior do Instituto Seti, na Califórnia. "Pouquíssima energia é necessária para mandar um sinal. Elas são fáceis de produzir, viajam na velocidade da luz e conseguem passar sem dificuldades pelas nuvens de poeira e gás que existem no espaço, sem muita interferência." As buscas se restringem às vizinhanças de estrelas parecidas com o Sol, onde a chance de haver planetas capazes de desenvolver vida é maior. Mas, só nos arredores do sistema solar, num raio de 100 anos-luz (uma mixaria astronômica), estima-se que existam milhares de estrelas desse tipo.
Nos últimos anos, o Seti tem sobrevivido só com dinheiro da iniciativa privada. É bem verdade que, com doadores do calibre de William Hewlett e David Packard (da HP), Gordon Moore (Intel) e Paul Allen (Microsoft), dinheiro não parece ser problema. Agora os cientistas estão esperando que a primeira fase do Conjunto de Telescópios Allen fique pronta na Califórnia. Em vez de um grande e único "prato", como o radiotelescópio porto-riquenho de Arecibo - a maior antena do mundo -, o novo projeto prevê centenas de antenas menores e mais modernas trabalhando em conjunto, em tempo integral. Seu poder de varredura será 300 vezes maior do que atualmente.

VOCÊS FALAM INGLÊS?
E se, finalmente recebermos a tão sonhada mensagem, o que faremos? Na prática, essa questão é deixada para depois. Primeiro porque, se recebermos um sinal vindo de, digamos, 100 anos-luz daqui, uma possível resposta levaria um século para atingir seu destino. Em segundo lugar, a maioria dos pesquisadores do Seti não acha que seríamos capazes de decifrar facilmente alguma língua alienígena. "Os radiotelescópios não foram feitos para identificar conteúdos de supostas mensagens", diz Shostak. "E como a mensagem provavelmente virá de uma civilização muito mais avançada do que a nossa, há uma boa chance de que nunca consigamos entendê-la." O importante seria simplesmente encontrar a prova. Aí a humanidade senta e vê o que faz.
Outra hipótese levantada pelos pesquisadores é que talvez não captemos algo endereçado a nós. "A Terra tem apenas 4,6 bilhões de anos de idade, enquanto a nossa galáxia tem mais de 13 bilhões. Nós aparecemos há pouco tempo na Via Láctea e, por isso, é muito improvável que tenhamos sido uma das primeiras civilizações a se desenvolver", diz Shostak. O mais provável seria captarmos transmissões entre diferentes ETs. Ou talvez sinais de comunicação doméstica deles, como os dos nossos satélites.
Só depois dessa prova - ou depois que a nossa tecnologia evoluir muito -, os cientistas acham que vai valer a pena tentar enviar mensagens. Até hoje, só foi feita uma transmissão, para celebrar uma grande reforma do radiotelescópio de Arecibo. Foi mandada uma mensagem composta de 1679 zeros e uns, que, se arrumados num quadro de 23 colunas e 73 linhas, mostrariam uma figura humana, um desenho da estrutura do nosso DNA, do próprio radiotelescópio e algumas indicações da posição da Terra no sistema solar e na Via Láctea. O destinatário escolhido foi um aglomerado de estrelas da constelação Hércules. Não se sabe se teremos resposta. E, mesmo que ela venha, vai demorar um pouquinho. Se a mensagem for respondida logo após ser recebida, vai levar algo em torno de... 50 mil anos para ela fazer a viagem de ida e volta.
Desanimador? Os astrônomos do Seti acham que não. "Meus cálculos sugerem que, como novo radiotelescópio Allen, conseguiremos captar um sinal alienígena até 2025", diz Shostak, que está envolvido em buscas desse tipo há 25 anos. "Com esse novo instrumento, poderemos verificar milhões de sistemas estelares nas próximas décadas." Até lá, o jeito é ter paciência e continuar escutando. "O Seti é uma jornada de descobertas", diz o astrônomo. "No final, o que você aprendeu durante o caminho pode ser muito mais importante do que encontrar aquilo que você procurava." Pode até ser, mas que ia ser mais fácil ter essa postura zen depois de bater papo com alguns ETs, disso ninguém duvida.

Caça virtual

Você quer ajudar a procurar extraterrestres de verdade sem sequer levantar da cadeira? Basta uma conexão com a internet e alguns cliques no mouse para participar do projeto Seti@Home, da Universidade de Berkeley, nos Estados Unidos. A idéia é simples e engenhosa. Todos os dados captados pelos radiotelescópios precisam ser analisados por computadores, que avaliam se eles contêm algum sinal alienígena. Como são gerados 35 gigabytes de informação por dia e o processamento é demorado, os cientistas se concentram na análise apenas dos sinais mais fortes. Para passar um pente-fino nos dados captados, seriam necessários computadores gigantescos e caríssimos. A solução encontrada foi dividir para conquistar. O Seti@Home é um protetor de tela para Windows, Macintosh e Linux que usa o tempo ocioso do computador para procurar ETs. O programa baixa um pedaço desses sinais de rádio via internet, faz a análise (algo em torno de 3 trilhões de contas) e depois manda o resultado de volta. Como há milhões de colaboradores no mundo inteiro, o resultado final é equivalente ao dos maiores e mais caros supercomputadores que existem. Para saber mais, visite o site do Seti@Home no endereço http://setiathome. ssl.berkeley.edu/

terça-feira, 28 de dezembro de 2010

Telescópio Hubble registra imagem de 'bolha'

15/12/2010 11h03 - Atualizado em 15/12/2010 11h03

Telescópio Hubble registra imagem de 'bolha' de gás rosa no espaço
Esfera é resultado de explosão da supernova SNR 0509.
Distância da Terra é de 160 mil anos-luz.


Uma imagem feita pelo Telescópio Espacial Hubble e divulgada pela agência espacial norte-americana nesta quarta-feira (15) mostra uma "bolha" de gás remanescente da explosão de uma estrela na região. Catalogada como SNR 0509 e distante 160 mil anos-luz, a esfera se encontra dentro da Grande Nuvem de Magalhães, uma galáxia satélite da Via Láctea, visível a olho nu. O formato mostra a expansão resultante de uma supernova, estágio final da vida das estrelas mais massivas. (Foto: Hubble / NASA / ESA / AP Photo)

sábado, 11 de dezembro de 2010

Retrato de Bebê - Mapa do Universo

RETRATO DE BEBÊ- Mapa do Universo



O mapa mais antigo do Universo foi feito em 1992, pelo radiotelescópio orbital Cobe (abreviatura do inglês Cosmic Background Explorer, ou Explorador do Fundo Cósmico). Na época, com a sua precisão considerada extraordinária, capturou diferenças minúsculas na radiação cósmica de fundo (leia na página ao lado). Em resumo: o Cobe "fotografou" o brilho do Big Bang, o momento mais próximo à origem do Universo. Onze anos depois, o que já era fantástico ficou ainda mais impressionante para os olhos humanos com o mapa montado pela sonda WMAP (Wilkinson Microwave Anisotropy Probe, ou Sonda Wilkinson de Medida da Anisotropia em Microondas), da Nasa. Foi como se os astrônomos tivessem passado uma década olhando para uma fotografia fora de foco e, de repente, recebessem a mesma imagem centenas de vezes mais nítida. Para os leitores de publicações científicas, os mapas do Cobe e da WMAP proporcionaram uma visão espetacular do nosso mundo. Para os cientistas, solidificaram as convicções a respeito do Big Bang, a teoria de que o Universo começou a se expandir depois de uma grande explosão. "A possibilidade de o Big Bang ser descartado em favor de um outro modelo é, na prática, nula", afirma o astrofísico Ivo Busko, do Space Telescope Science Institute (STSci), nos Estados Unidos.

O impacto da descoberta extrapola os debates acadêmicos. Segundo Busko, os resultados da WMAP, somados aos do telescópio espacial Hubble e de telescópios terrestres gigantes como VLT, Keck, Gemini e VLBA, mudaram completamente o caráter da cosmologia observacional. Antes, essa ciência contentava-se em obter medidas com erros de 50% a 100%. Agora, pode-se testar modelos cosmológicos com erros mínimos, na casa de algumas unidades percentuais. "Isso está gerando um enorme progresso no estudo do Universo", diz Busko. Graças ao mapa da WMAP, os cientistas puderam, enfim, cravar a idade do Universo, com uma margem de erro de mero 1%: 13,7 bilhões de anos. Calcularam também que as primeiras estrelas surgiram 200 milhões de anos após o Big Bang.

O impacto da descoberta
Os mapas celestes revelaram a infância do cosmo. Também permitiram cravar a idade do Universo em 13,7 bilhões de anos. Cada vez mais, os cientistas acreditam que tudo começou com uma explosão: o Big Bang

O passado em ondas
O Universo está repleto de radiação de microondas liberada nos seus primórdios. Chamada de radiação cósmica de fundo, surgiu quando elétrons e prótons se juntaram para formar os primeiros átomos de hidrogênio, o elemento mais abundante no cosmo. Essa radiação foi prevista pelo físico russo George Gamow nos anos 40 e observada duas décadas depois pelos astrofísicos americanos Arno Penzias e Robert Wilson. O mapeamento feito pela sonda WMAP indica que esse processo aconteceu 380 000 anos após o Big Bang. Como o Universo tem 13,7 bilhões de anos, a WMAP conseguiu revelar a infância cósmica. A sonda não registrou o céu como uma câmera fotográfica, mas captou ondas de rádio de diferentes direções enquanto girava no espaço. O processamento desses dados permitiu verificar as variações de temperatura da radiação de fundo, com diferenças de apenas milionésimos de grau entre as diversas regiões do Universo. A temperatura varia conforme a distribuição de matéria. Quanto mais matéria presente, mais energia a radiação precisa gastar para escapar de sua atração gravitacional, tendendo ao vermelho. A cor puxa para o violeta onde há menos matéria.

quinta-feira, 3 de junho de 2010

Telescópio montado em balão vai desvendar segredos do Sol

09/06/09 - 12h49 - Atualizado em 09/06/09 - 12h49

Telescópio montado em balão vai desvendar segredos do Sol
Sunrise foi lançado com sucesso de centro espacial na Suécia.
Estudo da estrela é importante para telecomunicações, por exemplo.

O telescópio montado num balão Sunrise ("nascer do Sol"), criado numa parceria entre
pesquisadores europeus e grupos da Nasa, subiu em segurança para sua posição a 40 km do solo e já está fazendo observações do Sol. Lançado a partir do Centro Espacial Esrange, na Suécia, o aparelho tem como objetivo observar detalhes da superfície solar com menos de 35 km, em busca de dados relevantes sobre a temperatura e o campo magnético do astro.

Tempestades eletromagnéticas solares podem afetar as telecomunicações aqui na Terra.




O telescópio Sunrise antes de subir aos céus (Foto: Daniel Duch/La Vanguardia)

sábado, 15 de maio de 2010

Cientistas conseguem observar 'fases' de planeta

28/05/09 - 06h00 - Atualizado em 28/05/09 - 12h01

Cientistas conseguem observar 'fases' de planeta fora do Sistema Solar
Feito foi possível com o satélite franco-europeu CoRoT.
Objeto é grande como Júpiter, mas gira próximo à estrela.


Foto: Observatório de Leiden Concepção artística das 'fases' de planeta extra-solar (Foto: Observatório de Leiden)Quatro séculos atrás, o célebre astrônomo Galileu Galilei ficou famoso por, entre outras coisas, apontar um telescópio na direção de Vênus e constatar que o planeta, magnificado, apresentava fases, iguais às que a Lua apresenta em seu movimento ao redor da Terra. Agora, astrônomos do Observatório de Leiden, na Holanda, fizeram exatamente a mesma coisa, mas com um planeta localizado fora do Sistema Solar.

Pode parecer pouca coisa, mas não é. Enquanto Vênus -- o astro observado por Galileu -- é o vizinho mais próximo da Terra e aparece no céu, a olho nu, como um objeto bastante brilhante, o planeta HD 189733b está tão distante que nem mesmo com o auxílio dos mais poderosos telescópios é possível observá-lo com clareza.

O objeto em questão está na categoria dos Hot Jupiters, assim chamados porque são gigantescos como Júpiter, mas orbitam muito próximos a suas estrelas-mães, o que faz deles incrivelmente quentes -- inabitáveis, portanto.

O feito foi obtido graças ao poder do telescópio espacial CoRoT, satélite franco-europeu que conta com participação brasileira e tem como uma de suas missões principais descobrir planetas fora do Sistema Solar. Ele monitorou o HD 189733b por 55 dias seguidos. Nessas circunstâncias, era impossível observar a luz vinda do planeta evitando a luz proveniente da estrela vizinha. Por conta disso, a descoberta e o monitoramento de planetas pelo CoRoT envolve uma complexa análise da luz vinda daquela região, que permite dizer quando um astro planetário passa à frente da estrela e, com análises subsequentes, observar a contribuição luminosa do planeta para a luz total que chega à Terra.

Por meio dessa análise, os cientistas liderados por Ignas Snellen conseguiram detectar uma flutuação gradual da luz vinda do planeta, conforme ele passava pelas fases crescente, minguante e nova. Esta última ocorria durante o chamado "trânsito", quando o planeta passa à frente da estrela. Já a fase cheia, não é visível porque nesse momento o planeta estaria passando atrás da estrela.

Os resultados foram publicados na edição desta semana do periódico científico britânico "Nature".

quinta-feira, 11 de março de 2010

Imagem da Nasa mostra ônibus espacial como 'mosquinha'

15/05/09 - 10h15 - Atualizado em 15/05/09 - 10h15

Imagem da Nasa mostra ônibus espacial como 'mosquinha' sobre o Sol
Cena impressionante foi obtida durante viagem da nave para o Hubble.
Astronautas têm missão de 11 dias de duração para reparar telescópio.

Uma imagem espetacular divulgada pela Nasa dá uma ideia da proporção -- ainda bastante distorcida por causa da distância, claro -- entre o ônibus espacial Atlantis e o Sol. Parecendo uma mosquinha perto do astro-rei, a nave americana foi clicada durante seu caminho rumo ao Telescópio Espacial Hubble. Os astronautas do Atlantis participam de uma missão de 11 dias para atualizar e reparar o telescópio.




Imagem foi obtida antes do contato com o Telescópio Espacial Hubble (Foto: AP Photo/Thierry Legault/Nasa)

quinta-feira, 4 de março de 2010

Crosta de estrela é 10 bilhões de vezes mais forte que o aço

15/05/09 - 07h54 - Atualizado em 15/05/09 - 07h54

Crosta de estrela é 10 bilhões de vezes mais forte que o aço, diz estudo
Modelos de computador indicam que estrelas de nêutrons têm o material conhecido mais forte do Universo.




Concepção artística mostra como seria uma estrela de nêutrons (Foto: Casey Reed/Penn State University)
Os cientistas americanos criaram simulações em computador para determinar a resistência da crosta da estrela, e descobriram que a crosta pode aguentar até dez bilhões de vezes a pressão necessária para romper o aço.

"Parece dramático mas é verdade", afirmou um dos cientistas que participou da pesquisa, o professor do Departamento de Física da Universidade de Indiana Charles Horowitz. A pesquisa foi publicada na revista especializada "Physical Review Letters".

Toneladas numa colher
Estrelas de nêutrons têm uma gravidade altíssima e podem girar até 700 vezes por segundo. São estrelas maciças que entraram em colapso depois da paralisação da fusão nuclear e da produção de energia em seus centros.

A única coisa mais densa que uma destas estrelas é um buraco negro. Para se ter uma ideia de sua densidade, uma colher de chá de matéria de uma estrela de nêutrons pesaria algo em torno de 100 milhões de toneladas.

"Criamos um modelo de uma pequena região da crosta de uma estrela de nêutrons seguindo os movimentos individuais de até 12 milhões de partículas", explicou o professor Horowitz. "E então calculamos como a crosta se deforma e, finalmente, se quebra sob o peso extremo de uma montanha de uma estrela de nêutrons."

Estas "montanhas" seriam irregularidades na superfície de estrelas que ajudariam a criar ondas gravitacionais que, teoricamente, poderiam alterar o espaço-tempo.

O trabalho foi realizado pela Universidade de Indiana e pelo Laboratório Nacional de Los Alamos, no Novo México.